1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
|
/* Parts of this software were written by Dirk Engling <erdgeist@erdgeist.org>
Those parts are considered beerware. Prost. Skol. Cheers or whatever.
Original idea and the place where I heavily stole code from is
http://www.quinapalus.com/efunc.html
Dr Mark St John OWEN, E-mail: mail -at- quinapalus -dot- com
*/
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define TO_Q16(X) ((int32_t)(65536.*(X)))
#define TO_Q26(X) ((int32_t)(67108864.*(X)))
#define FROM_Q16(X) ((double)((X)/65536.))
#define FROM_Q26(X) ((double)((x)/67108864.))
/*
It works as follows:
P = pow_QX_QY_QP( x, y ) == exp( ln(x) * y )
Where if x is negative:
* y must have no fractional part,
* the result's sign is the lowest integral bit of y
We note that in every standard Q representation ln(x) will not exceed
the value 22, so that we can safely work with a Q26 representation.
if ln(x) * y would overflow in that representation, so would
exp( ln(x) * y ) in Q16.
Finally exp() is calculated in the domain specified by script
*/
#if 0
The table[tm], generated from different versions of
generate_table, though.
+00,000000000465661287199 x = x + ( x >> 31 )
+00,000000000931322574182 x = x + ( x >> 30 )
+00,000000001862645147496 x = x + ( x >> 29 )
+00,000000003725290291523 x = x + ( x >> 28 )
+00,000000007450580569168 x = x + ( x >> 27 )
+00,000000014901161082825 x = x + ( x >> 26 )
+00,000000029802321943606 x = x + ( x >> 25 )
+00,000000059604642999034 x = x + ( x >> 24 )
+00,000000119209282445354 x = x + ( x >> 23 )
+00,000000238418550679858 x = x + ( x >> 22 )
+00,000000476837044516323 x = x + ( x >> 21 )
+00,000000953673861659188 x = x + ( x >> 20 )
+00,000001907346813825409 x = x + ( x >> 19 )
+00,000003814689989685890 x = x + ( x >> 18 )
+00,000007629365427567572 x = x + ( x >> 17 )
+00,000015258672648362398 x = x + ( x >> 16 )
+00,000030517112473186380 x = x + ( x >> 15 )
+00,000061033293680638527 x = x + ( x >> 14 )
+00,000122062862525677371 x = x + ( x >> 13 )
+00,000244110827527362707 x = x + ( x >> 12 )
+00,000488162079501351187 x = x + ( x >> 11 )
+00,000976085973055458925 x = x + ( x >> 10 )
+00,001951220131261749337 x = x + ( x >> 9 )
+00,003898640415657322889 x = x + ( x >> 8 )
+00,007782140442054948960 x = x + ( x >> 7 )
+00,015504186535965254479 x = x + ( x >> 6 )
+00,030771658666753687328 x = x + ( x >> 5 )
+00,060624621816434839938 x = x + ( x >> 4 )
+00,117783035656383455736 x = x + ( x >> 3 )
+00,223143551314209764858 x = x + ( x >> 2 )
+00,405465108108164384859 x = x + ( x >> 1 )
+00,693147180559945286227 x = ( x << 1 )
+01,386294361119890572454 x = ( x << 2 )
+02,772588722239781144907 x = ( x << 4 )
+05,545177444479562289814 x = ( x << 8 )
+11,090354888959124579628 x = ( x << 16 )
+21,487562597358305538364 x = ( x << 31 )
for negative values:
-00,374693449441410697531 x-= ( x >> 2 ) + ( x >> 4 )
-00,207639364778244489562 x-= ( x >> 2 ) - ( x >> 4 )
-00,115831815525121700761 x-= ( x >> 3 ) - ( x >> 6 )
-00,060380510988907482028 x-= ( x >> 4 ) - ( x >> 8 )
-00,031748698314580298119 x-= ( x >> 5 )
-00,015996403602177928366 x-= ( x >> 6 ) + ( x >> 12 )
-00,008089270731616965762 x-= ( x >> 7 ) + ( x >> 12 )
-00,004159027401785260480 x-= ( x >> 8 ) + ( x >> 12 )
-00,003423823349553609900 x-= ( x >> 8 ) - ( x >> 11 )
-00,001832733117311761669 x-= ( x >> 9 ) - ( x >> 13 )
-00,000961766059678620302 x-= ( x >> 10 ) - ( x >> 16 )
-00,000484583944571210926 x-= ( x >> 11 ) - ( x >> 18 )
-00,000243216525424976433 x-= ( x >> 12 ) - ( x >> 20 )
#endif
// input is Q16, outputQ26
static int32_t fixlog( int32_t x ) {
int32_t t,y;
// Assume an x in Q21 (shift by 15) and thus start with y with log(2^15)
y = TO_Q26(10.39720770839918);
if(x<0x00008000) x<<=16, y-= TO_Q26(11.09035488895912); /* log(65536) */
if(x<0x00800000) x<<= 8, y-= TO_Q26(5.545177444479562); /* log(256) */
if(x<0x08000000) x<<= 4, y-= TO_Q26(2.772588722239781); /* log(16) */
if(x<0x20000000) x<<= 2, y-= TO_Q26(1.386294361119891); /* log(4) */
if(x<0x40000000) x<<= 1, y-= TO_Q26(0.693147180559945); /* log(2) */
t=x+(x>>1); if((t&0x80000000)==0) x=t, y-= TO_Q26(0.405465108108164); /* log(1+1/2) */
t=x+(x>>2); if((t&0x80000000)==0) x=t, y-= TO_Q26(0.22314355131421); /* log(1+1/4) */
t=x+(x>>3); if((t&0x80000000)==0) x=t, y-= TO_Q26(0.117783035656384); /* log(1+1/8) */
t=x+(x>>4); if((t&0x80000000)==0) x=t, y-= TO_Q26(0.060624621816435); /* log(1+1/16) */
t=x+(x>>5); if((t&0x80000000)==0) x=t, y-= TO_Q26(0.030771658666754); /* log(1+1/32) */
t=x+(x>>6); if((t&0x80000000)==0) x=t, y-= TO_Q26(0.015504186535965); /* log(1+1/64) */
t=x+(x>>7); if((t&0x80000000)==0) x=t, y-= TO_Q26(0.007782140442055); /* log(1+1/128) */
t=x+(x>>8); if((t&0x80000000)==0) x=t, y-= TO_Q26(0.003898640415657); /* log(1+1/256) */
t=x+(x>>9); if((t&0x80000000)==0) x=t, y-= TO_Q26(0.001951220131262); /* log(1+1/512) */
t=x+(x>>10);if((t&0x80000000)==0) x=t, y-= TO_Q26(0.000976085973055); /* log(1+1/1024) */
t=x+(x>>11);if((t&0x80000000)==0) x=t, y-= TO_Q26(0.000488162079501); /* log(1+1/2048) */
t=x+(x>>12);if((t&0x80000000)==0) x=t, y-= TO_Q26(0.000244110827527); /* log(1+1/4096) */
t=x+(x>>13);if((t&0x80000000)==0) x=t, y-= TO_Q26(0.000122062862526); /* log(1+1/8192) */
/* Estimate residual error, log(1-x) which for small x is approx -x */
x = 0x80000000-x;
/* x has been promoted to Q31, substract residual error in Q26 by shifting down by 5 */
return y - ( x >> 5 );
}
// input is Q26, output Q16
static uint32_t fixexp(int32_t x) {
int32_t t;
/* Start y with 1.0 */
uint32_t y = 0x10000;
if( x >= 0 ) {
t=x-TO_Q26(5.545177444479562); if(t>=0) x=t,y<<=8; /* log(256) */
t=x-TO_Q26(2.772588722239781); if(t>=0) x=t,y<<=4; /* log(16) */
t=x-TO_Q26(1.386294361119891); if(t>=0) x=t,y<<=2; /* log(4) */
t=x-TO_Q26(0.693147180559945); if(t>=0) x=t,y<<=1; /* log(2) */
t=x-TO_Q26(0.405465108108164); if(t>=0) x=t,y+=y>>1; /* log(1+1/2) */
t=x-TO_Q26(0.22314355131421); if(t>=0) x=t,y+=y>>2; /* log(1+1/4) */
t=x-TO_Q26(0.117783035656384); if(t>=0) x=t,y+=y>>3; /* log(1+1/8) */
t=x-TO_Q26(0.060624621816435); if(t>=0) x=t,y+=y>>4; /* log(1+1/16) */
t=x-TO_Q26(0.030771658666754); if(t>=0) x=t,y+=y>>5; /* log(1+1/32) */
t=x-TO_Q26(0.015504186535965); if(t>=0) x=t,y+=y>>6; /* log(1+1/64) */
t=x-TO_Q26(0.007782140442055); if(t>=0) x=t,y+=y>>7; /* log(1+1/128) */
t=x-TO_Q26(0.003898640415657); if(t>=0) x=t,y+=y>>8; /* log(1+1/256) */
t=x-TO_Q26(0.001951220131262); if(t>=0) x=t,y+=y>>9; /* log(1+1/512) */
t=x-TO_Q26(0.000976085973055); if(t>=0) x=t,y+=y>>10; /* log(1+1/1024) */
t=x-TO_Q26(0.000488162079501); if(t>=0) x=t,y+=y>>11; /* log(1+1/2048) */
t=x-TO_Q26(0.000244110827527); if(t>=0) x=t,y+=y>>12; /* log(1+1/4096) */
t=x-TO_Q26(0.000122062862526); if(t>=0) x=t,y+=y>>13; /* log(1+1/8192) */
/* from here the values in Q26 become approx 2^n, so lets check bits
and fix the residual error below */
if(x&0x0001000) y+=y>>14;
if(x&0x0000800) y+=y>>15;
if(x&0x0000400) y+=y>>16;
if(x&0x0000200) y+=y>>17;
if(x&0x0000100) y+=y>>18;
if(x&0x0000080) y+=y>>19;
if(x&0x0000040) y+=y>>20;
if(x&0x0000020) y+=y>>21;
if(x&0x0000010) y+=y>>22;
if(x&0x0000008) y+=y>>23;
if(x&0x0000004) y+=y>>24;
if(x&0x0000002) y+=y>>25;
if(x&0x0000001) y+=y>>26;
} else {
x=-x;
t=x-TO_Q26(5.545177444479562); if(t>=0) x=t,y>>=8;
t=x-TO_Q26(2.772588722239781); if(t>=0) x=t,y>>=4;
t=x-TO_Q26(1.386294361119891); if(t>=0) x=t,y>>=2;
t=x-TO_Q26(0.693147180559945); if(t>=0) x=t,y>>=1;
t=x-TO_Q26(0.374693449441411); if(t>=0) x=t,y-=(y>>4) + (y>>2);
t=x-TO_Q26(0.207639364778244); if(t>=0) x=t,y-=(y>>2) - (y>>4);
t=x-TO_Q26(0.124642445207276); if(t>=0) x=t,y-=(y>>3) - (y>>7);
t=x-TO_Q26(0.062457354933746); if(t>=0) x=t,y-=(y>>4) - (y>>9);
t=x-TO_Q26(0.031244793038107); if(t>=0) x=t,y-=(y>>5) - (x>>11);
t=x-TO_Q26(0.015748356968139); if(t>=0) x=t,y-=(y>>6);
t=x-TO_Q26(0.007966216526084); if(t>=0) x=t,y-=(y>>7) + (y>>13);
t=x-TO_Q26(0.004036455850488); if(t>=0) x=t,y-=(y>>8) + (y>>13);
t=x-TO_Q26(0.002077351513834); if(t>=0) x=t,y-=(y>>9) + (y>>13);
t=x-TO_Q26(0.001099236751907); if(t>=0) x=t,y-=(y>>10)+ (y>>13);
t=x-TO_Q26(0.000610537902840); if(t>=0) x=t,y-=(y>>11)+ (y>>13);
t=x-TO_Q26(0.000366278009100); if(t>=0) x=t,y-=(y>>12)+ (y>>13);
t=x-TO_Q26(0.000213645867528); if(t>=0) x=t,y-=(y>>12)- (y>>15);
if(x&0x0002000) y-=y>>13;
if(x&0x0001000) y-=y>>14;
if(x&0x0000800) y-=y>>15;
if(x&0x0000400) y-=y>>16;
if(x&0x0000200) y-=y>>17;
if(x&0x0000100) y-=y>>18;
if(x&0x0000080) y-=y>>19;
if(x&0x0000040) y-=y>>20;
if(x&0x0000020) y-=y>>21;
if(x&0x0000010) y-=y>>22;
if(x&0x0000008) y-=y>>23;
if(x&0x0000004) y-=y>>24;
if(x&0x0000002) y-=y>>25;
if(x&0x0000001) y-=y>>26;
}
return y;
}
int fixpow(int32_t *pow, int32_t base, int32_t exponent )
{
int32_t log_base, res;
int64_t log_base_times_exponent;
int neg = 0;
if( base < 0 ) {
/* negative bases only can have integer exponents */
if( exponent & 0xffff ) return -1;
/* sign of power of a negative base is determined by
wether exp is even */
if( exponent & 0x10000 ) neg = 1;
base = abs(base);
}
/* To calculate pow(base,exp), we do exp( log(base) * exp )
which is mathematically the same. log_base is Q26 */
log_base = fixlog( base );
log_base_times_exponent = ( (int64_t)log_base * (int64_t)exponent ) >> 16;
#if 0
/* In Q0, fixexp overflows for values > 21,48756259689264 which
in Q26 notation is 1442005916 */
if( log_base_times_exponent > 1442005916 )
return -2;
#endif
/* In Q16, fixexp overflows for values > 10,39720770839918 */
if( log_base_times_exponent > TO_Q26(10.39720770839918) )
return -2;
res = (int32_t)log_base_times_exponent;
res = fixexp( res );
if( neg ) res = -res;
*pow = res;
return 0;
}
int main()
{
double base = -.5;
double exponent = 10.;
int32_t result;
int error = fixpow( &result, TO_Q16(base), TO_Q16(exponent) );
printf( "pow(%lf,%lf)=%lf (%s)\n", base, exponent, FROM_Q16(result), error?"ERROR":"OK" );
return 0;
}
|