/*---------------------------------------------------------------------------*\ FILE........: quantise.c AUTHOR......: David Rowe DATE CREATED: 31/5/92 Quantisation functions for the sinusoidal coder. \*---------------------------------------------------------------------------*/ /* All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1, as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, see . */ #include #include #include #include #include #include #include "defines.h" #include "dump.h" #include "quantise.h" #include "lpc.h" #include "lsp.h" #include "codec2_fft.h" #include "phase.h" #include "mbest.h" #undef PROFILE #include "machdep.h" #define LSP_DELTA1 0.01 /* grid spacing for LSP root searches */ /*---------------------------------------------------------------------------*\ FUNCTION HEADERS \*---------------------------------------------------------------------------*/ float speech_to_uq_lsps(float lsp[], float ak[], float Sn[], float w[], int m_pitch, int order); /*---------------------------------------------------------------------------*\ FUNCTIONS \*---------------------------------------------------------------------------*/ int lsp_bits(int i) { return lsp_cb[i].log2m; } int lspd_bits(int i) { return lsp_cbd[i].log2m; } #ifndef CORTEX_M4 int mel_bits(int i) { return mel_cb[i].log2m; } int lspmelvq_cb_bits(int i) { return lspmelvq_cb[i].log2m; } #endif #ifdef __EXPERIMENTAL__ int lspdt_bits(int i) { return lsp_cbdt[i].log2m; } #endif int lsp_pred_vq_bits(int i) { return lsp_cbjvm[i].log2m; } /*---------------------------------------------------------------------------*\ quantise_init Loads the entire LSP quantiser comprised of several vector quantisers (codebooks). \*---------------------------------------------------------------------------*/ void quantise_init() { } /*---------------------------------------------------------------------------*\ quantise Quantises vec by choosing the nearest vector in codebook cb, and returns the vector index. The squared error of the quantised vector is added to se. \*---------------------------------------------------------------------------*/ long quantise(const float * cb, float vec[], float w[], int k, int m, float *se) /* float cb[][K]; current VQ codebook */ /* float vec[]; vector to quantise */ /* float w[]; weighting vector */ /* int k; dimension of vectors */ /* int m; size of codebook */ /* float *se; accumulated squared error */ { float e; /* current error */ long besti; /* best index so far */ float beste; /* best error so far */ long j; int i; float diff; besti = 0; beste = 1E32; for(j=0; jlist[j].index[0]; for(i=0; ilist[j].index[1]; index[1] = n2 = mbest_stage2->list[j].index[0]; for(i=0; ilist[0].index[2]; n2 = mbest_stage3->list[0].index[1]; n3 = mbest_stage3->list[0].index[0]; mse = 0.0; for (i=0;i max_Rw) max_Rw = Rw[i]; if (Rw[i] < min_Rw) min_Rw = Rw[i]; } PROFILE_SAMPLE_AND_LOG(tr, tww, " R"); #ifdef DUMP if (dump) dump_Rw(Rw); #endif /* create post filter mag spectrum and apply ------------------*/ /* measure energy before post filtering */ e_before = 1E-4; for(i=0; i 242 ms // so please leave it as is or improve further // since this code is called 4 times it results in almost 4ms gain (21ms -> 17ms per audio frame decode @ 1300 ) for(i=0; iL; m++) { am = (int)((m - 0.5)*model->Wo/r + 0.5); bm = (int)((m + 0.5)*model->Wo/r + 0.5); // FIXME: With arm_rfft_fast_f32 we have to use this // otherwise sometimes a to high bm is calculated // which causes trouble later in the calculation // chain // it seems for some reason model->Wo is calculated somewhat too high if (bm>FFT_ENC/2) { bm = FFT_ENC/2; } Em = 0.0; for(i=am; iA[m]*model->A[m]; noise += (model->A[m] - Am)*(model->A[m] - Am); /* This code significantly improves perf of LPC model, in particular when combined with phase0. The LPC spectrum tends to track just under the peaks of the spectral envelope, and just above nulls. This algorithm does the reverse to compensate - raising the amplitudes of spectral peaks, while attenuating the null. This enhances the formants, and supresses the energy between formants. */ if (sim_pf) { if (Am > model->A[m]) Am *= 0.7; if (Am < model->A[m]) Am *= 1.4; } model->A[m] = Am; } *snr = 10.0*log10f(signal/noise); PROFILE_SAMPLE_AND_LOG2(tpf, " rec"); } /*---------------------------------------------------------------------------*\ FUNCTION....: encode_Wo() AUTHOR......: David Rowe DATE CREATED: 22/8/2010 Encodes Wo using a WO_LEVELS quantiser. \*---------------------------------------------------------------------------*/ int encode_Wo(C2CONST *c2const, float Wo, int bits) { int index, Wo_levels = 1<Wo_min; float Wo_max = c2const->Wo_max; float norm; norm = (Wo - Wo_min)/(Wo_max - Wo_min); index = floorf(Wo_levels * norm + 0.5); if (index < 0 ) index = 0; if (index > (Wo_levels-1)) index = Wo_levels-1; return index; } /*---------------------------------------------------------------------------*\ FUNCTION....: decode_Wo() AUTHOR......: David Rowe DATE CREATED: 22/8/2010 Decodes Wo using a WO_LEVELS quantiser. \*---------------------------------------------------------------------------*/ float decode_Wo(C2CONST *c2const, int index, int bits) { float Wo_min = c2const->Wo_min; float Wo_max = c2const->Wo_max; float step; float Wo; int Wo_levels = 1<Wo_min; float Wo_max = c2const->Wo_max; float norm; norm = (log10f(Wo) - log10f(Wo_min))/(log10f(Wo_max) - log10f(Wo_min)); index = floorf(Wo_levels * norm + 0.5); if (index < 0 ) index = 0; if (index > (Wo_levels-1)) index = Wo_levels-1; return index; } /*---------------------------------------------------------------------------*\ FUNCTION....: decode_log_Wo() AUTHOR......: David Rowe DATE CREATED: 22/8/2010 Decodes Wo using a WO_LEVELS quantiser in the log domain. \*---------------------------------------------------------------------------*/ float decode_log_Wo(C2CONST *c2const, int index, int bits) { float Wo_min = c2const->Wo_min; float Wo_max = c2const->Wo_max; float step; float Wo; int Wo_levels = 1<Wo_min; float Wo_max = c2const->Wo_max; float norm; norm = (Wo - prev_Wo)/(Wo_max - Wo_min); index = floorf(WO_LEVELS * norm + 0.5); //printf("ENC index: %d ", index); /* hard limit */ max_index = (1 << (WO_DT_BITS-1)) - 1; min_index = - (max_index+1); if (index > max_index) index = max_index; if (index < min_index) index = min_index; //printf("max_index: %d min_index: %d hard index: %d ", // max_index, min_index, index); /* mask so that only LSB WO_DT_BITS remain, bit WO_DT_BITS is the sign bit */ mask = ((1 << WO_DT_BITS) - 1); index &= mask; //printf("mask: 0x%x index: 0x%x\n", mask, index); return index; } /*---------------------------------------------------------------------------*\ FUNCTION....: decode_Wo_dt() AUTHOR......: David Rowe DATE CREATED: 6 Nov 2011 Decodes Wo using WO_DT_BITS difference from last frame. \*---------------------------------------------------------------------------*/ float decode_Wo_dt(C2CONST *c2const, int index, float prev_Wo) { float Wo_min = c2const->Wo_min; float Wo_max = c2const->Wo_max; float step; float Wo; int mask; /* sign extend index */ //printf("DEC index: %d "); if (index & (1 << (WO_DT_BITS-1))) { mask = ~((1 << WO_DT_BITS) - 1); index |= mask; } //printf("DEC mask: 0x%x index: %d \n", mask, index); step = (Wo_max - Wo_min)/WO_LEVELS; Wo = prev_Wo + step*(index); /* bit errors can make us go out of range leading to all sorts of probs like seg faults */ if (Wo > Wo_max) Wo = Wo_max; if (Wo < Wo_min) Wo = Wo_min; return Wo; } #endif /*---------------------------------------------------------------------------*\ FUNCTION....: speech_to_uq_lsps() AUTHOR......: David Rowe DATE CREATED: 22/8/2010 Analyse a windowed frame of time domain speech to determine LPCs which are the converted to LSPs for quantisation and transmission over the channel. \*---------------------------------------------------------------------------*/ float speech_to_uq_lsps(float lsp[], float ak[], float Sn[], float w[], int m_pitch, int order ) { int i, roots; float Wn[m_pitch]; float R[order+1]; float e, E; e = 0.0; for(i=0; iWo < (PI*150.0/4000)) { model->A[1] *= 0.032; } } /*---------------------------------------------------------------------------*\ FUNCTION....: encode_energy() AUTHOR......: David Rowe DATE CREATED: 22/8/2010 Encodes LPC energy using an E_LEVELS quantiser. \*---------------------------------------------------------------------------*/ int encode_energy(float e, int bits) { int index, e_levels = 1< (e_levels-1)) index = e_levels-1; return index; } /*---------------------------------------------------------------------------*\ FUNCTION....: decode_energy() AUTHOR......: David Rowe DATE CREATED: 22/8/2010 Decodes energy using a E_LEVELS quantiser. \*---------------------------------------------------------------------------*/ float decode_energy(int index, int bits) { float e_min = E_MIN_DB; float e_max = E_MAX_DB; float step; float e; int e_levels = 1<.5) /* Lower if not stable */ { w[0] *= .5; } /* Lower weight for low energy */ if (x[1] < xp[1]-10) { w[1] *= .5; } if (x[1] < xp[1]-20) { w[1] *= .5; } //w[0] = 30; //w[1] = 1; /* Square the weights because it's applied on the squared error */ w[0] *= w[0]; w[1] *= w[1]; } /*---------------------------------------------------------------------------*\ FUNCTION....: quantise_WoE() AUTHOR......: Jean-Marc Valin & David Rowe DATE CREATED: 29 Feb 2012 Experimental joint Wo and LPC energy vector quantiser developed by Jean-Marc Valin. Exploits correlations between the difference in the log pitch and log energy from frame to frame. For example both the pitch and energy tend to only change by small amounts during voiced speech, however it is important that these changes be coded carefully. During unvoiced speech they both change a lot but the ear is less sensitve to errors so coarser quantisation is OK. The ear is sensitive to log energy and loq pitch so we quantise in these domains. That way the error measure used to quantise the values is close to way the ear senses errors. See http://jmspeex.livejournal.com/10446.html \*---------------------------------------------------------------------------*/ void quantise_WoE(C2CONST *c2const, MODEL *model, float *e, float xq[]) { int i, n1; float x[2]; float err[2]; float w[2]; const float *codebook1 = ge_cb[0].cb; int nb_entries = ge_cb[0].m; int ndim = ge_cb[0].k; float Wo_min = c2const->Wo_min; float Wo_max = c2const->Wo_max; float Fs = c2const->Fs; /* VQ is only trained for Fs = 8000 Hz */ assert(Fs == 8000); x[0] = log10f((model->Wo/PI)*4000.0/50.0)/log10f(2); x[1] = 10.0*log10f(1e-4 + *e); compute_weights2(x, xq, w); for (i=0;iWo = powf(2.0, xq[0])*(PI*50.0)/4000.0; /* bit errors can make us go out of range leading to all sorts of probs like seg faults */ if (model->Wo > Wo_max) model->Wo = Wo_max; if (model->Wo < Wo_min) model->Wo = Wo_min; model->L = PI/model->Wo; /* if we quantise Wo re-compute L */ *e = POW10F(xq[1]/10.0); } /*---------------------------------------------------------------------------*\ FUNCTION....: encode_WoE() AUTHOR......: Jean-Marc Valin & David Rowe DATE CREATED: 11 May 2012 Joint Wo and LPC energy vector quantiser developed my Jean-Marc Valin. Returns index, and updated states xq[]. \*---------------------------------------------------------------------------*/ int encode_WoE(MODEL *model, float e, float xq[]) { int i, n1; float x[2]; float err[2]; float w[2]; const float *codebook1 = ge_cb[0].cb; int nb_entries = ge_cb[0].m; int ndim = ge_cb[0].k; assert((1<Wo/PI)*4000.0/50.0)/log10f(2); x[1] = 10.0*log10f(1e-4 + e); compute_weights2(x, xq, w); for (i=0;iWo_min; float Wo_max = c2const->Wo_max; for (i=0;iWo = powf(2.0, xq[0])*(PI*50.0)/4000.0; /* bit errors can make us go out of range leading to all sorts of probs like seg faults */ if (model->Wo > Wo_max) model->Wo = Wo_max; if (model->Wo < Wo_min) model->Wo = Wo_min; model->L = PI/model->Wo; /* if we quantise Wo re-compute L */ *e = POW10F(xq[1]/10.0); }